Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains.

Identifieur interne : 000B99 ( Main/Exploration ); précédent : 000B98; suivant : 000C00

Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains.

Auteurs : Ruiqin Zhong [États-Unis] ; Dongtao Cui [États-Unis] ; Zheng-Hua Ye [États-Unis]

Source :

RBID : pubmed:30083810

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.


DOI: 10.1007/s00425-018-2972-0
PubMed: 30083810


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA. yh@uga.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30083810</idno>
<idno type="pmid">30083810</idno>
<idno type="doi">10.1007/s00425-018-2972-0</idno>
<idno type="wicri:Area/Main/Corpus">000D14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D14</idno>
<idno type="wicri:Area/Main/Curation">000D14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D14</idno>
<idno type="wicri:Area/Main/Exploration">000D14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA. yh@uga.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Acetyltransferases (metabolism)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Galactose (metabolism)</term>
<term>Glucans (metabolism)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (metabolism)</term>
<term>Recombinant Proteins (MeSH)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (MeSH)</term>
<term>Xylans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (métabolisme)</term>
<term>Acétylation (MeSH)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Galactose (métabolisme)</term>
<term>Glucanes (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéines recombinantes (MeSH)</term>
<term>Spectrométrie de masse MALDI (MeSH)</term>
<term>Xylanes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetyltransferases</term>
<term>Arabidopsis Proteins</term>
<term>Galactose</term>
<term>Glucans</term>
<term>Membrane Proteins</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Arabidopsis</term>
<term>Galactose</term>
<term>Glucanes</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines membranaires</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Phylogeny</term>
<term>Recombinant Proteins</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Cellules HEK293</term>
<term>Humains</term>
<term>Phylogenèse</term>
<term>Protéines recombinantes</term>
<term>Spectrométrie de masse MALDI</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30083810</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>248</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains.</ArticleTitle>
<Pagination>
<MedlinePgn>1159-1171</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-018-2972-0</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="UNASSIGNED">AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Ruiqin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Dongtao</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Zheng-Hua</ForeName>
<Initials>ZH</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5714-744X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA. yh@uga.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DE-FG02-03ER15415</GrantID>
<Agency>US Department of Energy</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C574398">AXY4 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37294-28-3</RegistryNumber>
<NameOfSubstance UI="C029353">xyloglucan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X2RN3Q8DNE</RegistryNumber>
<NameOfSubstance UI="D005690">Galactose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005690" MajorTopicYN="N">Galactose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acetyltransferase</Keyword>
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">Cell wall</Keyword>
<Keyword MajorTopicYN="N">DUF231</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">Xyloglucan</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30083810</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-018-2972-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00425-018-2972-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2012 Nov;53(11):1934-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 15;104(20):8550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Jan 1;58(1):156-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28011867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Aug;52(8):1289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 13;289(24):16748-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1367-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:235-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26927904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):768-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25141999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jul;69(10):1983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Apr 4;13(4):e0194532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29617384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1662-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jun;20(6):1519-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 28;10(8):e1004334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2018 Jan;14(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29083419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Aug 2;288(31):22299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23779107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jan 24;45(3):839-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jul;54(7):1186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23659919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 08;11(1):e0146460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26745802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2018 Jun;247(6):1489-1498</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Apr 4;9(4):615-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26589447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Oct;42(2):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16982611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jun 25;3:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22737157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Nov;23(11):4041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jan;57(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Dec 1;58(12):2126-2138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29059346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1893-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1988 Feb 15;173(1):113-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3356024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2005 Aug 15;340(11):1818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15927168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jun 18;284(5422):1976-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10373113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Nov;163(3):1107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1355-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22665445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Feb;243:120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jul;6(4):1373-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Nov;23(11):4025-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3340-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Jan 22;8(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25642285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1271-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Sep;5(5):984-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1992 Mar 15;282 ( Pt 3):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1554366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
</noRegion>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30083810
   |texte=   Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30083810" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020